(Brief) Thoughts on Calibration for HPS

Tim Nelson - SLAC

HPS Collaboration Meeting - JLab 5/27/2011

Calibration and Conditions Data

Various data are needed to optimally reconstruct data:

Beamline

Key Questions

How do we determine calibration constants?

How often do we need to calibrate various systems?

How do we store calibration data?

How is calibration accessed during reconstruction?

Tracker Alignment

 A variety of algorithms can be used to align silicon tracking detectors.
 Simple: iterative tracking, pull measurement and alignment estimation
 Sophisticated: simultaneous determination of track parameters and alignment. Millipede (Blobel) <u>http://www.desy.de/~blobel/mptalks.html</u>

In general, 6 constants needed for each sensor (3 trans., 3 rot.): 120 total

- In practice, factorize the problem according to mechanical constraints: specifications should allow treatment of upper/lower halves as solid bodies
- In that case, full alignment constants will need to be determined only once
 A new set of 12 constants will need to be determined when tracker is moved

Tracker Alignment Data

Special datasets can be helpful:

- Magnet on/off
- Splash from BPMs or a thicker "alignment target"?

Additional questions to consider:

- Will sensors be flat enough to avoid bow constants?
- What will the global reference be and how will it be determined?

Other Tracker Calibration Data

The big three: Pedestals, Gains, Noise

- APV25 has internal calibration circuitry: magnitude, polarity and timing of calibration pulses are all programmable
- Assuming we have reasonable temperature stability for the APV25 chips, required frequency of calibration should be quite low
- Measure and store chip temperatures?
- Still a lot of constants: ~40000
- For multi-peak readout, may need parameters describing the shaping curve.
- Two parameters per chip?

ECal

Straight from Maurik:

- Timing (cable length effects): low-rate/cosmics data
- Pedestals: rate dependency?
- Gain (ADC/Energy): two-cluster pi0 trigger? fibers?
- Thresholds and trigger tuning

How often do these need to be determined? Are special runs required?

Beamline

Beam position and slope

Beam current and energy

Magnet currents

Calibration Storage/Access

Icsim conditions data currently stored in simple text files:

- Is this sufficient for test run?
- Tracking of files/versions
- Performance issues?

If not, what database system should be implemented? (I believe there are many possibilities that are simple in java.)

Summary

- A significant amount of calibration data needs to be produced, stored and accessed: mostly tracker-related.
- We need to define calibration procedures to determine all of the required constants. Some are obvious/easy, others not so much.
- Must determine what tools are needed for storage and access. Perhaps simple text files are adequate for test run.
- Set up collaborative confluence area for requirements?